MATHEMATICAL REASONING

1. STATEMENT :

A sentence which is either true or false but cannot be both are called a statement. A sentence which is an exclamatory or a wish or an imperative or an interrogative can not be a statement.

If a statement is true then its truth value is T and if it is false then its truth value is ${\sf F}$

For ex.

(i) "New Delhi is the capital of India", a true statement

(ii) "3 + 2 = 6", a false statement

(iii) "Where are you going $\ref{eq:constraint}$ not a statement beasuse

it connot be defined as true or false

 $\ensuremath{\textbf{Note}}$: A statement cannot be both true and false at a time

2. SIMPLE STATEMENT :

Any statement whose truth value does not depend on other statement are called simple statement

For ex. (i) " $\sqrt{2}$ is an irrational number" (ii) "The set of real number is an infinite set"

3. COMPOUND STATEMENT :

A statement which is a combination of two or more simple statements are called compound statement Here the simple statements which form a compound statement are known as its sub statements

For ex.

(i) "If x is divisible by 2 then x is even number"

(ii) " ΔABC is equilatral if and only if its three sides are equal"

4. LOGICAL CONNECTIVES :

The words or phrases which combined simple statements to form a compound statement are called logical connectives.

In the following table some possible connectives, their symbols and the nature of the compound statement formed by them

S.N.	Connectives	symbol	use	operation
1.	and	^	b∨d	conjunction
2.	or	\vee	$p \lor q$	disjunction
3.	not	~ or '	~ p or p'	negation
4.	If then	\Rightarrow or \rightarrow	$p \Rightarrow q$ or $p \rightarrow q$	Implication or conditional
5.	If and only if (iff)	\Leftrightarrow or \leftrightarrow	$p \Leftrightarrow q \ \text{ or } p \leftrightarrow q$	Equivalence or Bi-conditional

Explanation :

(i) $p \land q \equiv$ statement p and q

(p \wedge q is true only when p and q both are true otherwise it is false)

(ii) $p \lor q \equiv$ statement p or q

(p \lor q is true if at least one from p and q is true i.e. p \lor q is false only when p and q both are false)

(iii) $\tilde{p} \equiv not$ statement p

($\tilde{}\ p$ is true when p is false and $\tilde{}\ p$ is false when p is true)

(iv) $p \Rightarrow q \equiv$ statement p then statement q

(p \Rightarrow q is false only when p is true and q is false otherwise it is true for all other cases)

(v) $p \Leftrightarrow q \equiv$ statement p if and only if statement q

(p \Leftrightarrow q is true only when p and q both are true or false otherwise it is false)

5. **TRUTH TABLE :**

A table which shows the relationship between the truth value of compound statement S(p, q, r ...) and the truth values of its sub statements p, q, r, ... is said to be truth table of compound statement S If p and q are two simple statements then truth table for basic logical connectives are given below

Conjunction Negation

р	q	p∧q	
Т	Т	Т	
Т	F	F	
F	Т	F	
F	F	F	

Disjunction							
р	q	$\mathbf{p} \lor \mathbf{q}$					
Т	Т	Т					
Т	F	Т					
F	Т	Т					
F	F	F					

р	(~ p
Т	F
F	Т

C	Cond	itional	tional	ional	litional	nditional
р	q	$p \rightarrow q$	$p \rightarrow q$	$p \rightarrow q$	$p \rightarrow q$	$q p \rightarrow q$
Т	Т	Т	Т	Т	Т	ГТ
Т	F	F	F	F	F	F
F	Т	Т	Т	Т	Т	т Л
F	F	Т	Т	Т	Т	T F

Note : If the compound statement contain n sub statements then its truth table will contain 2^n rows.

Illustration 1 :

Which of the following is correct for the statements p and q ?

(1) $p \land q$ is true when at least one from p and q is true

(2) $p \rightarrow q$ is true when p is true and q is false

(3) $p \leftrightarrow q$ is true only when both p and q are true

(4) \sim (p \vee q) is true only when both p and q are false

Solution :

We know that $p \wedge q$ is true only when both p and q are true so option (1) is not correct we know that $p \rightarrow q$ is false only when p is true and q is false so option (2) is not correct we know that $p \leftrightarrow q$ is true only when either p and q both are true or both are flase so option (3) is not correct we know that $(p \lor q)$ is true only when $(p \lor q)$ is false i.e. p and q both are false So option (4) is correct

6. LOGICAL EQUIVALENCE :

Two compound statements $S_1(p, q, r...)$ and $S_2(p, q, r...)$ are said to be logically equivalent or simply equivalent if they have same truth values for all logically possibilities

Two statements S_1 and S_2 are equivalent if they have identical truth table i.e. the entries in the last column of their truth table are same. If statements S_1 and S_2 are equivalent then we write $S_1 \equiv S_2$

For ex. The truth table for $(p \rightarrow q)$ and $(p \lor q)$ given as below

р	q	(~ p)	$p \rightarrow q$	∼p∨q
Т	Т	F	Т	Т
T	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

We observe that last two columns of the above truth table are identical hence compound statements $(p \rightarrow q)$ and $(p \lor q)$ are equivalent

Illustration 2 :

Equivalent statement of the statement "if 8 > 10 then $2^2 = 5$ " will be :-

(1) if $2^2 = 5$ then 8 > 10 (2) 8 < 10 and $2^2 \neq 5$

(3)
$$8 < 10$$
 or $2^2 = 5$ (4) none of these

Solution :

We know that $p \rightarrow q \equiv \tilde{p} \lor q$

 \therefore equivalent statment will $8 \neq 10$ or $2^2 = 5$

or $8 \le 10$ or $2^2 = 5$

So (4) will be the correct answer.

Do yourself - 1 :

(i) Which of the following is logically equivalent to $(p \land q)$?

(1)
$$p \rightarrow \tilde{q}$$
 (2) $\tilde{p} \lor \tilde{q}$ (3) $\tilde{p} \rightarrow \tilde{q}$ (4) $\tilde{p} \land \tilde{q}$

7. TAUTOLOGY AND CONTRADICTION :

(i) Tautology : A statement is said to be a tautology if it is true for all logical possibilities i.e. its truth value always T. it is denoted by t.
 For ex. the statement p ∨ ~ (p ∧ q) is a tautology

CA.	uie	Statemen	пр	•	(P / Y	q) 13 a taut	ology
			n	a	n A a	\sim (n \wedge d)	$n \sqrt{2}$

p	q	$p \land q$	~ (p∧q)	p∨ ~ (p ∧ q)
Т	Т	Т	F	Т
T	F	F	Т	Т
F	Т	F	Т	Т
F	F	F	Т	Т

Clearly, The truth value of $p \vee (p \land q)$ is T for all values of p and q. so $p \land (p \land q)$ is a tautology (ii) **Contradiction** : A statement is a contradiction if it is false for all logical possibilities.

i.e. its truth value always F. It is denoted by c.

For	ex.	The	statement	(p	\vee	q)	\wedge	p	\wedge	(p	is	а	contradiction
-----	-----	-----	-----------	----	--------	----	----------	---	----------	----	----	---	---------------

р	q	~ p	~ q	$\mathbf{p} \lor \mathbf{q}$	(~ p∧ ~ q)	$(p \lor q) \land (\tilde{p} \land \tilde{q})$
Т	Т	F	F	Т	F	F
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	F	F
F	F	Т	Т	F	Т	F

Clearly, then truth value of $(p \lor q) \land (p \land q)$ is F for all value of p and q. So $(p \lor q) \land (p \land q)$ is a contradiction.

Note : The negation of a tautology is a contradiction and negation of a contradiction is a tautology

Do yourself - 2 :

By truth table prove that :

(i) $p \leftrightarrow q \equiv \tilde{p} \leftrightarrow \tilde{q}$ (ii) $p \wedge (\tilde{p} \lor q) \equiv p \land q$ (iii) $p \lor (\tilde{p} \lor q)$ is a tautology.

8. ALGEBRA OF STATEMENTS :

If p, q, r are any three statements then the some low of algebra of statements are as follow

(i) Idempotent Laws :

(a) $p \land p \equiv p$ (b) $p \lor p \equiv p$ i.e. $p \land p \equiv p \equiv p \lor p$

р	(p ^ p)	$(p \lor p)$
Т	Т	Т
F	F	F

(ii) Comutative laws :

(a) $p \land q \equiv q \land p$

(b)	р	\vee	q	≡	q	\vee	р
-----	---	--------	---	---	---	--------	---

p	q	(p ∧ q)	(q ^ p)	$(p \lor q)$	$(q \lor p)$
Т	Т	Т	Т	Т	Т
T	F	F	F	Т	Т
F	Т	F	F	Т	Т
F	F	F	F	F	F

(iii) Associative laws :

(a) $(p \land q) \land r \equiv p \land (q \land r)$

(b) $(p \lor q) \lor r \equiv p \lor (q \lor r)$

р	q	r	$(p \land q)$	$(q \land r)$	$(p \land q) \land r$	$p \land (q \land r)$
Т	Т	Т	Т	Т	Т	Т
T	Т	F	Т	F	F	F
T	F	Т	F	F	F	F
T	F	F	F	F	F	F
F	Т	Т	F	Т	F	F
F	Т	F	F	F	F	F
F	F	Т	F	F	F	F
F	F	F	F	F	F	F

Similarly we can proved result (b)

(iv) Distributive laws : (a) $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ (c) $p \land (q \land r) \equiv (p \land q) \land (p \land r)$ (b) $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ (d) $p \lor (q \lor r) \equiv (p \lor q) \lor (p \lor r)$

р	q	r	$(q \lor r)$	(p ^ q)	$(p \land r)$	$p \wedge (q \vee r)$	$(p \land q) \lor (p \land r)$
Т	Т	Т	Т	Т	Т	Т	Т
T	Т	F	Т	Т	F	Т	Т
T	F	Т	Т	F	Т	Т	Т
T	F	F	F	F	F	F	F
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F

Similarly we can prove result (b), (c), (d)

(v) De Morgan Laws : (a)
$$\tilde{}$$
 (p \wedge q) \equiv $\tilde{}$ p \vee $\tilde{}$ q
(b) $\tilde{}$ (p \vee q) \equiv $\tilde{}$ p \wedge $\tilde{}$ q

р	q	~ p	~ q	$(p \land q)$	~ (p ∧ q)	(~ p∨ ~ q)
Т	Т	F	F	Т	F	F
T	F	F	Т	F	Т	Т
F	Т	Т	F	F	Т	Т
F	F	Т	Т	F	Т	Т

Similarly we can proved resulty (b)

(vi) Involution laws (or Double negation laws) :

 $\tilde{(p)} \equiv p$

р	~ p	~ (~ p)	
Т	F	Т	
F	Т	F	

(vii) Identity Laws : If p is a statement and t and c are tautology and contradiction respectively then

(d) $p \lor c \equiv p$

(a)	p ^	t ≡	р	(b) p ∨ t	(c) $p \land c \equiv c$		
р	t	с	(p ∧ t)	$(p \lor t)$	(p ^ c)	(p ∨ c)	
Т	Т	F	Т	Т	F	Т	•
F	Т	F	F	Т	F	F	

(viii) Complement Laws :

(a) $p \land (\tilde{p}) \equiv c$ (b) $p \lor (\tilde{p}) \equiv t$ (c) $(\tilde{t}) \equiv c$ (d) $(\tilde{c}) \equiv t$ $\begin{array}{c|c} p & \tilde{p} & (p \land \tilde{p}) & (p \lor \tilde{p}) \\ \hline T & F & F & T \\ F & T & F & T \end{array}$

(ix) Contrapositive laws : $p \rightarrow q \equiv \ q \rightarrow \ p$

р	q	~ p	~ q	$p \rightarrow q$	$\tilde{q} \rightarrow \tilde{p}$
Т	Т	F	F	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

Illustration 3 :

~(p \lor q) \lor (~p \land q) is equivalent to-

(1) p	(2) ~p	(3) q	(4) ~q
Solution : ::	$\tilde{p} \vee q \vee \tilde{p} \wedge q$	$) \equiv (~p \land ~q) \lor (~p \land q)$	(By Demorgan Law)
	$\equiv p \land (q \lor q)$	(By distributive laws)	
	$\equiv p \wedge t$	(By complement laws)	
	≡ ~p	(By Identity Laws)	Ans. (2
Do yourself -	3 :		
(i) Statement (j	$p \land \tilde{q} \land (\tilde{p} \lor q)$ is		
(1) a tautol	ogy	(2) a contradiction	

(3) neither a tautology not a contradiction (4) None of these

9. NEGATION OF COMPOUND STATEMENTS :

If p and q are two statements then

(i) Negation of conjunction : $(p \land q) \equiv p \lor q$

р	q	~ p	~ q	$(p \land q)$	~ (p ^ q)	(~ p∨ ~ q)
Т	Т	F	F	Т	F	F
T	F	F	Т	F	Т	Т
F	Т	Т	F	F	Т	Т
F	F	Т	Т	F	Т	Т

(ii) Negation of disjunction : $(p \lor q) \equiv p \land q$

-	-					
p	q	~ p	~ q	$(p \lor q)$	(~ p∨q)	(~ p∧ ~ q)
Т	Т	F	F	Т	F	F
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	F	F
F	F	Т	Т	F	Т	Т

(iii) Negation of conditional : $(p \rightarrow q) \equiv p \land q$

р	q	~ q	$(p \rightarrow q)$	$$ (p \rightarrow q)	(p∧ ~ q)
Т	Т	F	Т	F	F
Т	F	Т	F	Т	Т
F	Т	F	Т	F	F
F	F	Т	Т	F	F

(iv) Negation of biconditional : $(p \leftrightarrow q) \equiv (p \land q) \lor (q \land p)$

we know that $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

 $\tilde{(p \leftrightarrow q)} \equiv \tilde{[(p \rightarrow q) \land (q \rightarrow p)]}$ $\equiv \tilde{(p \rightarrow q)} \lor \tilde{(q \rightarrow p)}$ $\equiv (p \land \tilde{q}) \lor (q \land \tilde{p})$

Note : The above result also can be proved by preparing truth table for $(p \leftrightarrow q)$ and $(p \land q) \lor (q \land p)$

Illustration 4 :

...

Negation of the statement $p \rightarrow (q \land r)$ is-

$$(1) \quad p \rightarrow \quad (q \land r) \qquad (2) \quad p \lor (q \land r) \qquad (3) (q \land r) \rightarrow p \qquad (4) \ p \land (\tilde{q} \lor \tilde{r})$$

Solution :

 $\widetilde{(p \to (q \land r))} \equiv p \land \widetilde{(q \land r)} \qquad (\because \widetilde{(p \to q)} \equiv p \land \widetilde{(q)})$ $\equiv p \land (\widetilde{(q \lor r)})$ Ans. (4)

Illustration 5 :

The negation of the statement "If a quadrilateral is a square then it is a rhombus"

(1) If a quadrilateral is not a square then is a rhombus it

(2) If a quadrilateral is a square then it is not a rhombus

(3) a quadrilateral is a square and it is not a rhombus

(4) a quadritateral is not a square and it is a rhombus

Solution :

Let p and q be the statements as given below

 ${\bf p}$: a quadrilateral is a square

q : a quadritateral is a rhombus

the given statement is $\mathbf{p} \rightarrow \mathbf{q}$

 $\therefore \quad \tilde{(p \to q)} \equiv p \land \tilde{q}$

Therefore the negation of the given statement is a quadrilateral is a square and it is not a rhombus Ans. (3)

Do yourself - 4 :

(i) Consider the following statements :-

p: Ram sleeps.

q : Ram eats

r : Ram studies

then negation of the statement "If Ram eats and does not sleep then he will study" will be : -

(1) $(p \lor \tilde{q}) \rightarrow \tilde{r}$ (3) $q \land \tilde{p} \lor r$

(4) None of these

10. DUALITY :

Two compound statements S_1 and S_2 are said to be duals of each other if one can be obtained from the other by replacing \land by \lor and \lor by \land

(2) $(p \vee \tilde{q}) \vee r$

If a compound statement contains the special variable t (tautology) and c (contradiction) then obtain its dual we replaced t by c and c by t in addition to replacing \land by \lor and \lor by \land .

	Note :		
	(i) the connectives \wedge and \vee are also called dua	l of each other.	
	(ii) If $S^*(p, q)$ is the dual of the compound stat	ement S(p, q) then	
	(a) $S^*(\tilde{p}, \tilde{q}) \equiv \tilde{S}(p, q)$	(b) ${}^{\sim}S^{*}(p, q) \equiv S({}^{\sim}p, {}^{\sim}q)$	
Illusti	ration 6 :		
	The duals of the following statements		
	(i) $(p \land q) \lor (r \lor s)$ (ii) $(p \lor t) \land (p \lor c)$	(iii) $(p \land q) \lor (p \land (q \lor s))$]
Solut	ion :		
	(i) $(p \lor q) \land (r \land s)$		
	(ii) $(p \land c) \lor (p \land t)$		
	(iii) $(p \lor q) \land [p \lor (q \land s)]$		
11.	CONVERSE, INVERSE AND CONTRAPOS	TIVE OF THE CONDITION	IAL STATEMENT ($p \rightarrow q$):
	(i) Converse : The converse of the conditional	l statement p \rightarrow q is defined as	$s q \rightarrow p$
	(ii) Inverse : The inverse of the conditional sta	tement p \rightarrow q is defined as $$ p	$\phi \rightarrow \tilde{q}$
	(iii) Contrapositive : The contrapositive of con	ditional statement $\mathrm{p} ightarrow \mathrm{q}$ is de	fined as $\tilde{q} \rightarrow \tilde{p}$
Illusti	ration 7 :		
	If $x = 5$ and $y = -2$ then $x - 2y = 9$. The cont	rapositive of this statement is-	
	(1) If $x - 2v \neq 9$ then $x \neq 5$ or $v \neq -2$	(2) If x – 2v ≠ 9 then x	$z \neq 5$ and $v \neq -2$
	(3) If $x - 2v = 9$ then $x = 5$ and $v = -2$	(4) None of these	, o,
Solut	tion •	(-, - ·	
00.2.	Let p q r be the three statements such that		
	p: x = 5 $q: y = -2$ and $r: x - 2y = 9$		
	Here given statement is $(p \land q) \rightarrow r$ and its cont	rapositive is $\tilde{r} \rightarrow \tilde{(p \land q)}$	
	i.e. $\mathbf{r} \rightarrow (\mathbf{p} \lor \mathbf{q})$	apoente e u p	
	i.e. if $x - 2y \neq 9$ then $x \neq 5$ or $y \neq -2$		Ans. (1)
	Do yourself - 5 :		
	(i) If $S^*(p, q, r)$ is the dual of the compound	statement S(p, q, r) and S(p, q	q, r) = $p \wedge [\tilde{q} \vee r]$ then
	$S^*(\tilde{p}, \tilde{q}, \tilde{r})$ is equivalent to -		
	(1) $S(p, q, r)$ (2) $\tilde{S}(\tilde{p}, q, r)$	(3) ~S(p, q, r)	(4) S*(p, q, r)
	(ii) Contrapositive of the statement		
	$(p \rightarrow q) \rightarrow (r \rightarrow \tilde{s})$ will be :-		
	(1) $(\mathbf{p} \to \mathbf{q}) \to (\mathbf{r} \to \mathbf{s})$ (3) $(\mathbf{r} \to \mathbf{s}) \lor (\mathbf{p} \to \mathbf{c} \mathbf{q})$	(2) (r \wedge s) \vee (p \vee q) (4) None	
	(3) $(1 \vee 3) \vee (p \land q)$	(4) NOILE	